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ABSTRACT

The High-Resolution Rapid Refresh (HRRR) model became operational at the National Centers for

Environmental Prediction (NCEP) in 2014 but the HRRR’s performance over certain regions of the coter-

minous United States has not been well studied. In the present study, we evaluated how well version 2 of the

HRRR, which became operational at NCEP in August 2016, simulates the near-surface meteorological fields

and the surface energy balance at two locations in northernAlabama.We evaluated the 1-, 3-, 6-, 12-, and 18-h

HRRR forecasts, as well as the HRRR’s initial conditions (i.e., the 0-h initial fields) using meteorological

and flux observations obtained from two 10-m micrometeorological towers installed near Belle Mina and

Cullman,Alabama.During the 8-monthmodel evaluation period, from 1 September 2016 to 30April 2017, we

found that the HRRR accurately simulated the observations of near-surface air and dewpoint temperature

(R2 . 0.95). When comparing the HRRR output with the observed sensible, latent, and ground heat flux at

both sites, we found that the agreement was weaker (R2 ’ 0.7), and the root-mean-square errors were much

larger than those found for the near-surface meteorological variables. These findings help motivate the need

for additional work to improve the representation of surface fluxes and their coupling to the atmosphere in

future versions of the HRRR to be more physically realistic.

1. Introduction

The High-Resolution Rapid Refresh (HRRR) model

is an hourly updating convection-allowing model that

is used for short-range weather forecasts (Benjamin

et al. 2016). Version 1 of the HRRR became opera-

tional for the coterminous United States in September

2014 and has been upgraded every two years since

then, with version 2 of the HRRR (HRRRv2) be-

coming operational in August 2016, and HRRRv3

becoming operational in July 2018. Forecasts are

available up to 18 h from initialization in versions 1 and

2 of the HRRR, and 36-h forecasts are available in

version 3.

It is important that the HRRR simulates near-surface

exchange processes of heat and moisture and modifica-

tion of momentum from the land surface to the atmo-

sphere to produce reliable and accurateweather forecasts

(e.g., Smirnova et al. 2016; Lee et al. 2018; Wulfmeyer

et al. 2018). For example, differences in vegetation cover,

land use, soil moisture, soil temperature, and soil type

lead to differences in the partitioning of energy into

sensible and latent heat fluxes (e.g., Oke 1987; Segal

and Arritt 1992; Brown and Arnold 1998; Pielke 2001;

Kalthoff et al. 2011), resulting in finescale circulations

which affect boundary layer growth and development

(e.g., Courault et al. 2007). These feedbacks are highly

nonlinear (e.g., Santanello et al. 2018; Wulfmeyer

et al. 2018) and are hypothesized to be enhanced by a

warming climate (e.g., Dirmeyer et al. 2012).Corresponding author: Dr. Temple R. Lee, temple.lee@noaa.gov
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Ensuring that the HRRR is able to simulate near-

surface exchange processes requires careful and thor-

ough evaluation of the model output to identify and

correct potential model biases. We focused our in-

vestigation on the southeast United States, where the

only known evaluation of the HRRR’s performance

is a recent study by Wagner et al. (2019) that used obser-

vations from the Atmospheric Emitted Radiance Inter-

ferometer (AERI; Knuteson et al. 2004; Turner and

Blumberg 2019) installed on the Collaborative Lower

Atmosphere Mobile Profiling System (CLAMPS)

that was deployed near Belle Mina, Alabama. Wagner

et al. used temperature and humidity profiles retrieved

from AERI radiance measurements to calculate convec-

tive available potential energy (CAPE) and compared

these values with output from the HRRRv1 in March

and April 2016 as a component of VORTEX-Southeast

(VORTEX-SE). AERI-derived CAPEobservations have

been shown to have reasonable skill compared to radio-

sondes (Blumberg et al. 2017); Wagner et al. (2019)

noted that the HRRRv1 diurnal distribution of CAPE

was lagged 2 to 4 h compared to the AERI observa-

tions, which was likely due to the lack of subgrid-scale

clouds in that version of the HRRR and the subsequent

feedback by the warmer surface on convective activity.

In the present study we used measurements from two

10-m micrometeorological towers that were installed in

northern Alabama in 2016 and 2017, one of which was

installed approximately 1 km northeast of CLAMPS at

Belle Mina, to help evaluate HRRR’s performance over

the southeast United States. We used output from the

HRRRv2, which included a treatment for subgrid-scale

clouds, from an 8-month model evaluation period from

1 September 2016 to 30 April 2017.

2. Datasets and models

a. Micrometeorological tower observations

Meteorological measurements were obtained from

two 10-m micrometeorological towers in northern

Alabama (Fig. 1a) that were installed in February

2016 to complement the rich suite of meteorological

observations made during VORTEX-SE, including

the CLAMPS referenced earlier. VORTEX-SE was a

multiyear field experiment focused on studying the char-

acteristics associated with the genesis of severe weather

events that are (seemingly) unique to the Southeast

United States. These characteristics include more variable

terrain, larger and denser forested areas, and different

vegetation type and coverage than in regions where

previous studies have been conducted (i.e., the central

and southern plains). For more details, we refer the

reader toDumas et al. (2016),Dumas et al. (2017),Wagner

et al. (2019), and Lee et al. (2019).

One of the micrometeorological towers used to sup-

port VORTEX-SEwas installed approximately 1km east

of CLAMPS at the Auburn University Tennessee Valley

Research andExtension Center [34.698N, 86.878W, 189m

above mean sea level (MSL)] located 4.7km north of

FIG. 1. (a) Locations of Belle Mina and Cullman (black circles) relative to Huntsville (HSV) and Birmingham

(BMX) (black squares). The locations of the 10-m micrometeorological towers at (b) Belle Mina and (c) Cullman

are shown. Images are obtained from GoogleEarth. Elevation is shown in (a), contoured in 150-m increments.
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Belle Mina, Alabama, which is approximately 27 km

west of Huntsville (Fig. 1b). The area immediately

surrounding the site was mostly flat with grazed

pasture. A mixture of cotton and soybean crops was

located in fields 1–2 km to the west and north of the

tower. The second micrometeorological tower was

installed at the North Alabama Horticulture Re-

search Station near Cullman, AL (34.198N, 86.808W,

241m MSL) (Fig. 1c). The area surrounding this tower

was characterized by larger surface roughness than

the Belle Mina site and consisted of ungrazed grass-

land as well as several fruit orchards located near

the tower.

The towers at both sites were instrumented with

temperature, humidity, wind, incoming and outgo-

ing shortwave and longwave radiation, pressure, and

rainfall sensors (Table 1). The sensor suite was cho-

sen because of the sensors’ manufacturer-stated level

of accuracy (cf. Table 1) and because these sensors

have been used reliably for other micrometeorologi-

cal studies in the eastern United States (e.g., Lee

et al. 2015).

Broadband upwelling infrared measurements from

a Hukseflux four-component net radiometer, model

number NR-01, were used to compute skin temperature.

We computed the skin temperature Ts using the Stefan–

Boltzmann relationship:

T
s
5

�
LW

out

«s

�0:25

. (1)

In Eq. (1), LWout is the outgoing longwave radiation,

« is the surface emissivity, and s is the Stefan–Boltzmann

constant. When calculating Ts, we used a value for

« of 0.97, which is a typical value for plant leaves (e.g.,

Jackson 1982).

The sampling frequency from all meteorological var-

iables at both sites was 1Hz, and 1-min means were

stored onto three on-site dataloggers (two Campbell

Scientific CR-3000 loggers and one CR-1000 logger).

Hourly means of the 1-min data were computed to fa-

cilitate comparisons with the HRRR output. Measure-

ments from a CSAT3 sonic anemometer and an EC155

closed path infrared gas analyzer, both installed 10-m

AGL, were sampled at 10Hz and stored onto the

dataloggers on-site. The 10-Hzmeasurements were then

used to compute 30-min sensible and latent heat fluxes.

A second CSAT3 sonic anemometer and an EC155

analyzer were installed at 3m AGL at both sites, al-

though in the present study we primarily focused on the

measurements at 10m AGL.

The postprocessing applied standard corrections

and coordinate rotations to all high-frequency sonic

anemometer and closed path gas analyzer datasets (e.g.,

Meyers 2001). To this end, we first used the 10-Hz data to

compute the covariance between the u, y, and w com-

ponents of the wind and scalars, specifically u0u0, y0y0,
w0w0, u0y0, u0w0, w0T 0, and w0q0. Once we computed these

covariances, a mathematical coordinate transformation

was done with the constraints that w5 y5 0 (Meyers

and Baldocchi 2005). The wind speed vectors were first

TABLE 1. Meteorological variables, sampling instruments, manufacturer, model type, manufacturer-stated accuracy, and sampling

height(s) for the variables used in this study, sampled at the micrometeorological towers at Belle Mina and Cullman, Alabama.

Variable Instrument Manufacturer

Model

type

Manufacturer-stated

accuracy

Sampling

height(s)

(m AGL)

Temperature, dewpoint

temperature

Relative humidity (RH)

and temperature probe

Vaisala HMP110 61.5% RH

(at 0%–90% RH)

2

62.5% RH

(at 90%–100% RH)

60.28C (at 08–408C)
60.48C

(at ,08C or .408C)
Soil temperature Soil temperature probe NOAA/ARL/ATDD ASTP-2007–50 — 20.02, 20.05

Wind speed, wind

direction

Propeller anemometer RM Young 05103 60.3m s21 10

Net radiation Four-component net

radiometer

Hukseflux NR01 610% 3

Pressure Barometric pressure

sensor

RM Young 61302V 60.05% 1

Three-dimensional

wind components

3D sonic anemometer Campbell Scientific CSAT3 ,68 cm s21 (u, y) 3, 10

,4 cm s21 (w)

Water vapor mixing

ratio

Closed path infrared

gas analyzer

Campbell Scientific EC155 2%a 3, 10

a This reported value assumed that the analyzer was zeroed and spanned using appropriate standards.
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computed using the mean u-, y-, and w-wind compo-

nents (i.e., u1, y1, and w1, respectively) measured using

the sonic anemometer’s coordinates. Following Tanner

and Thurtell (1969), we then computed the azimuth

h and elevation u angles and used these to rotate the

covariances. We corrected the rotated covariances for

angle-of-attack errors (e.g., Kochendorfer et al. 2012),

using an angle-of-attack correction of 1.07. Once the

rotated covariances were corrected, we computed the

30-min sensible (H) and latent (LE) heat fluxes using

Eqs. (2) and (3):

H5 c
pm
r
m

w0T 0
� �

rot
, (2)

LE5 0:0183M
d
3 w0q0

� �
rot

3 25002 2:44T
� �

. (3)

In the above equations, cpm is the specific heat capacity

corrected for moist air, rm is the density corrected for

moist air, w0T 0
� �

rot
is the kinematic form of the rotated

vertical temperature flux, Md is the number of moles of

dry air, w0q0
� �

rot
is the kinematic form of the rotated

vertical moisture flux, and T is the mean temperature

from the sonic anemometer. Similarly, we computed u*
using the rotated covariances, following Eq. (4):

u*5 u0w0
� �2

rot
1 y0w0

� �2

rot

� 	1/4
. (4)

Once we computed the 30-min fluxes and u*, we per-

formed additional screening to eliminate unrealistic esti-

mates. To this end, we eliminated sensible and latent

heat fluxes that were,2200Wm22 or were.800Wm22,

and we filtered values of u* that were ,0ms21 or

were .2ms21. We then averaged the 30-min means

to determine the 1-h means for comparison with the

HRRR output. To calculate the ground heat fluxes from

the observations, we used the gradient method (e.g., Sauer

and Horton 2005). The gradient method computes the

ground heat flux as a function of the soil temperatures

measured at 2 and 5 cm below ground level, combined

with an estimate of the soil’s thermal conductivity. The

soil’s thermal conductivity was obtained from the bulk

density and porosity measurements obtained from five

different soil samples surrounding each of the sites.

The meteorological and flux datasets from both

towers were mostly complete, with 91% and 83% of

the data available from Belle Mina and Cullman, re-

spectively, over the 8-month model evaluation period.

The smaller percentage of data availability at Cullman

was partially due to a 14-day data gap in April 2017

caused by an on-site power outage. Both towers were

removed in May 2017 following the conclusion of the

spring 2017 VORTEX-SE campaign.

b. HRRR

The HRRR model is nested within the Rapid Re-

fresh (RAP) modeling system domain. The HRRR is

updated hourly and run with a 3-km grid spacing over

the coterminous United States (e.g., Smith et al. 2008;

Benjamin et al. 2016).

TheHRRRuses the RapidUpdate Cycle (RUC) land

surface model (LSM) and uses an implicit scheme for

computing surface fluxes [see, e.g., Smirnova et al.

(1997) for more details]. The newer LSM implemented

in the HRRR has nine soil levels (i.e., at 0, 1, 4, 10, 30,

60, 100, 160, and 300 cm), compared with the six levels

used in earlier versions of this LSM, and has improved

treatment of snow compared with earlier versions

(Smirnova et al. 2016). In version 2 of the HRRR,

which we used in the present study, 30-min land use

obtained information from the Moderate Resolution

Imaging Spectroradiometer (MODIS) was used (T. G.

Smirnova 2019, personal communication). Additionally,

the RAP modeling system uses the Mellor–Yamada–

Nakanishi–Niino (MYNN) planetary boundary layer

(PBL)mixing scheme (Nakanishi andNiino 2004, 2009).

For its use in the RAP, the MYNN has been modified

to prevent negative turbulent kinetic energy and to im-

prove itsmixing-length formulation (Benjamin et al. 2016).

The Rapid Radiative Transfer Model Global (RRTMG)

was used for computing shortwave and longwave ra-

diation. The RRTMG was modified from the Rapid

Radiative Transfer Model (RRTM; Iacono et al. 2008)

to better account for aerosols (Benjamin et al. 2016).

For additional details on the HRRR configuration, we

refer the reader toBenjamin et al. (2016) and to Smirnova

et al. (2016) for more details on the LSM.

The grid cell that contains Belle Mina is classified

as cropland, which has a mean albedo of 0.168. The

cropland plant functional type is not irrigated, although

we note that there are plans to include the effects of

irrigation into the cropland plant functional type in

subsequent versions of the RUC LSM (e.g., Smirnova

et al. 2016). Important to note here, though, is that the

area surrounding Belle Mina was mostly grassland; the

implications of this are discussed later in the paper. In

contrast, the Cullman land use type in the HRRR is

woody savanna, which has a mean albedo of 0.149.

We evaluated the HRRR’s analysis and forecasts for

the following variables: 2-m air temperature (Ta), skin

temperature (Ts), 2-m dewpoint temperature (Td),

10-m wind speed (Wspd), the u and y components of the

wind (u and y), friction velocity (u*), incoming short-

wave radiation (SWin), outgoing shortwave radiation

(SWout), incoming longwave radiation (LWin), outgo-

ing longwave radiation (LWout), sensible heat flux (H),

638 WEATHER AND FORECAST ING VOLUME 34



latent heat flux (LE), and ground heat flux (G). [We

obtained these data, which are available beginning in

middle July 2016, from http://home.chpc.utah.edu/

;u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi

(Blaylock et al. 2017).]

We used SWin, SWout, LWin, and LWout output from

the HRRR, which were computed using the RRTMG

(cf. section 2b), to compute the net radiation, which we

defined as Rn1, as shown in Eq. (5):

R
n1
5 SW

in
2 SW

out
1LW

in
2LW

out
. (5)

We then compared this value of Rn1 with the observed

energy balance components obtained from the net ra-

diometer at both sites.

We also computed the net radiation from the HRRR

output of H, LE, and G, with the assumption of surface

energy balance closure, as shown in Eq. (6):

R
n2
5H1LE1G . (6)

Because the HRRRv2 became operational at NCEP

on 23August 2016 and because themicrometeorological

towers were removed from Belle Mina and Cullman in

early May 2017, we focused on the 8-month period from

1 September 2016 to 30 April 2017 for evaluating the

HRRRv2. Unlike the HRRRv1, which did not have

subgrid-scale clouds, the HRRRv2 included a treatment

for subgrid-scale clouds. The absence of subgrid-scale

clouds in the HRRRv1 resulted in a well-known and

large positive bias in SWin that created warm biases inTa

and Ts (e.g., Benjamin et al. 2016; Wagner et al. 2019),

which has been improved in the HRRRv2.

We focused much of our investigation on the 1-h

forecast from the HRRR for comparison with the mi-

crometeorological tower observations discussed in the

previous section. We also evaluated the HRRR analysis

(i.e., its initial condition at 0 h) and at longer fore-

cast periods (i.e., the 3-, 6-, 12-, and 18-h forecasts). We

quantified the HRRR performance over the model

TABLE 2. MBE, best-fit equation, R2, and RMSE between observations (Obs.) from Belle Mina and Cullman and the HRRR over the

period 1 Sep 2016–30Apr 2017, based on all hourly observations available from both sites for the 1-h HRRR forecast. The number of data

points used in each fit N is also noted.

Station Variable MBE: HRRR 2 Obs.

Best-fit equation

(y: HRRR, x: Obs.) R2 RMSE N

Belle Mina Ta 20.388 6 1.288C y 5 1.03x 2 0.81 0.98 1.268C 5236

Ts 20.628 6 2.308C y 5 0.96x 2 0.01 0.95 2.278C 5236

Td 20.168 6 1.668C y 5 0.97x 1 0.12 0.96 1.648C 5236

u 20.24 6 1.14m s21 y 5 1.00x 2 0.24 0.72 1.14m s21 5236

y 20.05 6 1.25m s21 y 5 1.09x 2 0.07 0.86 1.23m s21 5236

Wspd 0.98 6 1.11m s21 y 5 0.90x 1 1.26 0.71 1.09m s21 5236

u* 0.06 6 0.13m s21 y 5 1.13x 1 0.03 0.58 0.13m s21 5173

SWin 25.93 6 84.26Wm22 y 5 0.92x 1 6.95 0.90 81.8Wm22 5223

SWout 29.78 6 19.49Wm22 y 5 0.68x 1 0.18 0.88 12.07Wm22 5236

LWin 26.14 6 20.78Wm22 y 5 0.99x 2 1.73 0.86 20.77Wm22 5236

LWout 8.43 6 12.68Wm22 y 5 0.99x 1 12.94 0.95 12.67Wm22 5236

H 9.70 6 53.82Wm22 y 5 1.02x 1 9.22 0.66 53.8Wm22 5135

LE 18.27 6 52.36Wm22 y 5 0.96x 1 19.58 0.58 52.3Wm22 5049

G 29.52 6 27.92Wm22 y 5 0.91x 2 9.53 0.77 27.52Wm22 5224

Rn1 211.4 6 62.17Wm22 y 5 0.98x 2 9.51 0.90 62.03Wm22 5236

Rn2 19.01 6 73.2Wm22 y 5 1.10x 1 12.65 0.87 71.42Wm22 4978

Cullman Ta 20.038 6 1.258C y 5 1.03x 2 0.49 0.98 1.228C 4789

Ts 20.528 6 2.028C y 5 0.97x 2 0.01 0.96 2.008C 4789

Td 0.768 6 1.248C y 5 1.01x 1 0.67 0.98 1.248C 4789

u 20.18 6 1.03m s21 y 5 1.01x 2 0.18 0.67 1.03m s21 4789

y 0.05 6 1.24m s21 y 5 1.17x 1 0.07 0.85 1.17m s21 4789

Wspd 1.16 6 1.03m s21 y 5 1.01x 1 1.14 0.70 1.03m s21 4789

u* 0.16 6 0.16m s21 y 5 1.43x 1 0.06 0.67 0.15m s21 4338

SWin 2.30 6 86.37Wm22 y 5 0.93x1 12.69 0.88 84.76Wm22 4787

SWout 29.99 6 20.7Wm22 y 5 0.63x 1 0.97 0.87 11.57Wm22 4789

LWin 27.37 6 20.87Wm22 y 5 1.00x 2 6.30 0.86 20.87Wm22 4789

LWout 8.89 6 11.4Wm22 y 5 0.98x 1 15.8 0.95 11.36Wm22 4789

H 14.19 6 47.33Wm22 y 5 1.21x 1 9.02 0.73 45.50Wm22 4710

LE 14.56 6 36.81Wm22 y 5 0.94x 1 16.66 0.69 36.63Wm22 4530

G 23.10 6 36.35Wm22 y 5 0.82x 2 3.66 0.68 34.57Wm22 4783

Rn1 24.08 6 63.89Wm22 y 5 1.01x 2 4.99 0.89 63.84Wm22 4789

Rn2 26.31 6 79.70Wm22 y 5 1.10x 1 20.59 0.83 78.15Wm22 4476
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evaluation period by computing the mean bias error

(MBE), the coefficient of determination (R2), and root-

mean-square error (RMSE).

We computed the MBE, R2, and RMSE using the

hourly values and distinguished between daytime and

nighttime periods. To remove the effects of the morning

and evening transition periods, we defined daytime as

between 1200 and 1600 LST (LST5UTC2 6 h), and we

defined nighttime as between 0000 and 0400 LST.

3. Results

a. Hourly observations

Over the 8-month period for which we evaluated the

HRRR, we found good agreement between the ob-

served and 1-h HRRR forecasts of Ta, Ts, and Td at both

Belle Mina and Cullman (Table 2). The mean difference

between the model and observations for these variables

was less than 0.758C, R2 exceeded 0.95 in all cases, and

the slope of the relationship between the model and

observations was between 0.96 and 1.03 for all three

variables at both sites. Good agreement was also found

when we selected only afternoon values, as shown in

Table 3, and when we selected only nighttime values, as

shown in Table 4. In both of these instances, the slopes of

the relationships were generally’1, and the RMSEs did

not show any significant differences between daytime

and nighttime. Furthermore, we did not note any biases

in the relationships for either high or low temperatures

or dewpoints, suggesting that the HRRR was able to

capture the range of variability across the different sea-

sons studied. For a graphical representation of these re-

lationships, as well as the other relationships discussed

in this section, we refer the reader to the appendix.

The relationship between the observed 10-mWspd and

Wspd from the HRRRwas weaker than the relationships

found for the thermodynamic variables for both sites;R2

for Wspd is 0.71 and 0.70 at Belle Mina and Cullman,

respectively, when focusing on the entire diurnal cycle,

although we note that the slope of the relationship for

Wspd was comparable with the slopes of the relationship

TABLE 3. As in Table 2, but for afternoon (1200–1600 LST) values.

Station Variable MBE: HRRR 2 Obs.

Best-fit equation

(y: HRRR, x: Obs.) R2 RMSE N

Belle Mina Ta 0.678 6 0.978C y 5 1.04x 2 0.03 0.99 0.918C 1095

Ts 21.258 6 2.838C y 5 1.05x 2 2.48 0.93 2.798C 1095

Td 0.218 6 2.008C y 5 0.93x 1 0.73 0.94 1.918C 1095

u 20.02 6 1.30m s21 y 5 0.99x 2 0.02 0.73 1.30m s21 1095

y 20.03 6 1.42m s21 y 5 1.09x 2 0.08 0.88 1.39m s21 1095

Wspd 0.88 6 1.15m s21 y 5 0.99x 1 0.92 0.69 1.15m s21 1095

u* 20.12 6 0.13m s21 y 5 0.85x 1 0.16 0.34 0.13m s21 1084

SWin 22.03 6 138.99Wm22 y 5 0.87x 1 53.69 0.75 134.44Wm22 1088

SWout 221.47 6 25.98Wm22 y 5 0.66x 1 4.68 0.72 19.89Wm22 1095

LWin 27.95 6 19.11Wm22 y 5 0.98x 1 0.69 0.88 19.05Wm22 1095

LWout 6.39 6 17.14Wm22 y 5 1.07x 2 23.51 0.92 16.72Wm22 1095

H 32.64 6 92.77Wm22 y 5 0.88x 1 43.35 0.40 92.2Wm22 1089

LE 42.91 6 87.39Wm22 y 5 0.68x 1 69.2 0.34 83.00Wm22 1081

G 29.03 6 35.71Wm22 y 5 0.67x 1 4.14 0.53 31.77Wm22 1094

Rn1 3.54 6 99.83Wm22 y 5 0.89x 1 32.43 0.75 97.68Wm22 1095

Rn2 67.31 6 108.08Wm22 y 5 0.97x 1 74.61 0.70 107.88Wm22 1080

Cullman Ta 1.028 6 0.908C y 5 1.03x 1 0.51 0.99 0.878C 1001

Ts 20.918 6 2.618C y 5 0.95x 1 0.18 0.93 2.578C 1001

Td 1.218 6 1.378C y 5 1.00x 1 1.21 0.97 1.378C 1001

u 20.23 6 1.08m s21 y 5 1.04x 2 0.25 0.75 1.08m s21 1001

y 0.15 6 1.34m s21 y 5 1.17x 1 0.11 0.88 1.24m s21 1001

Wspd 1.10 6 1.07m s21 y 5 1.13x 1 0.66 0.67 1.05m s21 1001

u* 0.24 6 0.15m s21 y 5 1.06x 1 0.22 0.45 0.15m s21 984

SWin 9.82 6 141.53Wm22 y 5 0.82x 1 84.04 0.72 133.39Wm22 1000

SWout 224.31 6 28.64Wm22 y 5 0.56x 1 9.10 0.69 18.62Wm22 1001

LWin 28.55 6 20.05Wm22 y 5 1.02x 2 15.21 0.88 20.02Wm22 1001

LWout 7.69 6 15.63Wm22 y 5 0.96x 1 23.61 0.92 15.49Wm22 1001

H 43.32 6 69.64Wm22 y 5 1.01x 1 42.35 0.53 69.6Wm22 993

LE 41.13 6 53.27Wm22 y 5 0.72x 1 64.19 0.56 48.83Wm22 1000

G 6.23 6 47.26Wm22 y 5 0.52x 1 20.10 0.44 36.37Wm22 1001

Rn1 17.44 6 99.58Wm22 y 5 0.86x 1 51.19 0.72 96.50Wm22 1001

Rn2 90.38 6 107.22Wm22 y 5 0.91x 1 108.04 0.67 106.03Wm22 993
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for the thermodynamic variables at both sites (Table 2).

We found similar agreement between the observations

ofWspd and theHRRRduring the daytime (Table 3) and

nighttime (Table 4), and RMSEs were around 1ms21

regardless of the time period considered.

When breaking the 10-m wind into its u and

y components, we found that the y-wind component

compared better with the HRRR at both sites, with R2

around 0.86 at both sites. For the u-wind component, R2

was approximately 0.7 at Belle Mina and Cullman.

Furthermore, the individual u- and y-wind components

did not show any notable differences in the MBE, R2, or

RMSE between daytime and nighttime.

We found that HRRR overestimated u* at both sites,

as indicated by the slopes of this relationship of 1.13 and

1.43 at Belle Mina and Cullman, respectively, (Table 2).

The slope of this relationship was about the same when

only daytime values were considered, but R2 decreased at

both sites (Table 3). The agreement was poorest at night-

time as the HRRR significantly overestimated u* at Cull-

man. We revisit the poor agreement during the nighttime

later in this section when discussing the agreement be-

tween the observed and HRRR-derived fluxes.

Overall, smallerR2 and larger deviations from themean

were found for the radiation components over the period

for which we evaluated the HRRR. Of the four radiation

components, we found that the agreement was best for

LWout with R2 of 0.95 at both sites although the other

radiation components all hadR2. 0.85 when the entire

diurnal cycle was considered (Table 2). Comparable

values of RMSE and R2 were found during the daytime

(Table 3) and nighttime (Table 4). Although the slopes of

the best fit lines were near 1 for LWin and LWout, the

slopes of the best fit lineswere’0.92 for SWin at both sites,

but were,0.7 for SWout when the entire diurnal cycle was

considered (cf. Table 2). This became more pronounced

when considering only the afternoon period (cf. Table 3).

The smaller slopes and poorer relationships for SWout

were due to biases in SWin and may be attributed to a

surface albedo problem in the HRRR, or potentially to

an incorrect treatment of subgrid-scale clouds. We inves-

tigate and discuss this in more detail in section 3d.

TABLE 4. As in Table 2, but for nighttime (0000–0400 LST) values. Note that the statistics are not shown for SWin or SWout.

Station Variable MBE: HRRR 2 Obs.

Best-fit equation

(y: HRRR, x: Obs.) R2 RMSE N

Belle Mina Ta 20.948 6 1.228C y 5 0.97x 2 0.58 0.97 1.208C 1091

Ts 20.198 6 1.588C y 5 0.92x 1 0.61 0.96 1.468C 1091

Td 20.528 6 1.308C y 5 0.99x 2 0.47 0.97 1.308C 1091

u 20.35 6 1.05m s21 y 5 1.02x 2 0.35 0.68 1.05m s21 1091

y 20.01 6 1.26m s21 y 5 1.04x 2 0.01 0.79 1.26m s21 1091

Wspd 1.04 6 1.06m s21 y 5 0.86x 1 1.34 0.71 1.03m s21 1091

u* 0.03 6 0.12m s21 y 5 1.11x 1 0.01 0.53 0.12m s21 1073

SWin — — — — —

SWout — — — — —

LWin 25.40 6 22.05Wm22 y 5 0.99x 1 2.55 0.84 22.04Wm22 1091

LWout 9.82 6 7.64Wm22 y 5 0.95x 1 27.63 0.96 7.4Wm22 1091

H 2.92 6 12.03Wm22 y 5 0.58x 2 0.48 0.33 15.8Wm22 1067

LE 4.06 6 11.08Wm22 y 5 0.81x 1 7.53 0.20 10.76Wm22 963

G 211.15 6 19.82Wm22 y 5 0.78x 2 18.09 0.53 10.99Wm22 1090

Rn1 212.55 6 19.57Wm22 y 5 1.01x 2 12.26 0.60 19.56Wm22 1096

Rn2 22.28 6 20.92Wm22 y 5 0.80x 2 10.29 0.48 20.33Wm22 1008

Cullman Ta 20.558 6 1.138C y 5 0.99x 2 0.47 0.98 1.128C 1003

Ts 20.408 6 1.198C y 5 0.99x 2 0.27 0.97 1.198C 1003

Td 0.378 6 1.038C y 5 1.02x 1 0.20 0.98 1.028C 1003

u 20.16 6 1.02m s21 y 5 1.05x 2 0.16 0.58 1.02m s21 1003

y 0.02 6 1.37m s21 y 5 1.16x 1 0.08 0.75 1.33m s21 1003

Wspd 1.24 6 0.94m s21 y 5 1.03x 1 1.18 0.74 0.94m s21 1003

u* 0.12 6 0.16m s21 y 5 1.54x 1 0.02 0.69 0.15m s21 832

SWin — — — — —

SWout — — — — —

LWin 26.19 6 21.54Wm22 y 5 0.99x 2 1.43 0.85 21.52Wm22 1003

LWout 8.94 6 6.11Wm22 y 5 1.01x 1 3.92 0.97 6.09Wm22 1003

H 21.85 6 13.93Wm22 y 5 0.83x 2 3.28 0.35 13.77Wm22 975

LE 3.61 6 10.15Wm22 y 5 0.85x 1 3.98 0.20 10.10Wm22 877

G 27.22 6 21.07Wm22 y 5 0.79x 2 14.08 0.51 20.35Wm22 1005

Rn1 212.27 6 19.89Wm22 y 5 0.91x 2 15.15 0.59 19.77Wm22 1008

Rn2 24.17 6 22.71Wm22 y 5 0.72x 2 15.07 0.41 21.60Wm22 887
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When comparing H, LE, and G between the HRRR

1-h forecast and observations, we found better agree-

ment between the Cullman observations and HRRR

output than between the Belle Mina observations and

the HRRR. At Belle Mina, R2 for H, LE, and G is 0.66,

0.58, and 0.76, respectively, but at Cullman, R2 for these

variables is around 0.7 when the entire diurnal cycle was

evaluated (cf. Table 2). Additionally, the slope of the

relationship between the model and observed H, LE,

and G was 1.02, 0.96, and 0.91, respectively, at Belle

Mina, but was 0.94, 0.82, and 1.01, respectively, at

Cullman. The result of these differences between the

two sites is best illustrated when computing the net ra-

diation from the observations and comparing this with

the HRRR. There was better agreement between the

observations andHRRRwhenRn is computed as the net

sum of the incoming and outgoing shortwave and long-

wave radiation components (i.e., Rn1), with R2 of 0.90

and 0.89 at Belle Mina and Cullman, respectively. The

R2 was lower and the RMSE was larger when Rn is

computed as the sum of the heat fluxes (i.e.,Rn2), withR
2

of 0.87 and 0.83 at BelleMina andCullman, respectively.

When we separated by time of day, we found that the

relationship between the observed and HRRR H, LE,

and G, as R2 is smaller and the RMSE is larger during

both the daytime and nighttime. We also found that the

slopes of the best-fit lines for the afternoon period

(cf. Table 3) and nighttime period (cf. Table 4) are lower

than those for the entire diurnal cycle (cf. Table 2),

which we attributed to the larger scatter during these

periods. We investigate the larger scatter in more detail

in section 3c where we describe the mean diurnal cy-

cles of the surface energy balance components. When

separating by time of day, we also found that the fluxes

from the HRRR showed the poorest agreement with

the observations during the nighttime when turbulent

mixing is weakest and thus fluxes are smallest. During

the nighttime periods, we found R2 values of,0.3 forH

and LE at both sites. We attribute the poor agreement

between the observed nighttime fluxes and the HRRR

fluxes, as well as the HRRR’s overestimates of u* dis-

cussed earlier in this section, to the fact that models

oftentimes struggle under weak wind conditions, which

are characteristic of nighttime conditions over the

TABLE 5. RMSE between the observations and HRRR output for the 0-, 1-, 3-, 6-, 12-, and 18-h HRRR forecasts for all time periods.

Station Variable 0 h 1 h 3 h 6 h 12 h 18 h

Belle Mina Ta (8C) 1.21 1.26 1.41 1.63 1.82 1.86

Ts (8C) 2.02 2.27 2.57 2.70 2.66 2.67

Td (8C) 1.42 1.64 1.93 2.13 2.17 2.19

u (m s21) 0.78 1.14 1.22 1.30 1.30 1.31

y (m s21) 0.94 1.23 1.45 1.53 1.54 1.60

Wspd (m s21) 0.75 1.09 1.22 1.23 1.19 1.22

u* (m s21) 0.13 0.13 0.14 0.14 0.14 0.14

SWin (Wm22) 92.10 81.80 87.37 88.46 88.39 86.80

SWout (Wm22) 12.69 12.07 12.83 12.45 12.45 12.30

LWin (Wm22) 19.25 20.77 21.59 21.34 22.31 22.55

LWout (Wm22) 11.30 12.67 14.31 15.05 14.74 14.68

H (Wm22) 50.91 53.80 55.97 54.88 54.75 55.66

LE (Wm22) 55.80 52.30 52.12 52.28 54.72 54.46

G (Wm22) 31.31 27.52 27.31 27.68 27.27 27.36

Rn1 (Wm22) 70.96 62.03 64.64 64.89 66.08 64.31

Rn2 (Wm22) 76.85 71.42 74.40 74.93 75.65 75.04

Cullman Ta (8C) 1.15 1.22 1.29 1.48 1.70 1.76

Ts (8C) 1.84 2.00 2.20 2.28 2.26 2.25

Td (8C) 1.25 1.24 1.53 1.74 1.90 1.92

u (m s21) 0.77 1.03 1.08 1.11 1.09 1.10

y (m s21) 0.87 1.17 1.25 1.32 1.29 1.32

Wspd (m s21) 0.79 1.03 1.10 1.14 1.10 1.11

u* (m s21) 0.11 0.15 0.15 0.16 0.15 0.16

SWin (Wm22) 90.60 84.76 80.24 79.69 83.36 85.09

SWout (Wm22) 12.37 11.57 11.32 11.22 12.25 12.30

LWin (Wm22) 19.01 20.87 20.64 21.62 22.61 23.30

LWout (Wm22) 10.49 11.36 12.44 12.82 12.67 12.53

H (Wm22) 40.11 45.50 46.48 45.50 46.72 46.72

LE (Wm22) 34.65 36.63 34.74 35.18 35.61 36.96

G (Wm22) 36.76 34.57 33.63 33.27 33.35 33.69

Rn1 (Wm22) 70.93 63.84 59.83 59.79 62.25 64.04

Rn2 (Wm22) 73.80 78.15 76.01 74.90 77.18 79.32
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SoutheastUnited States. Furthermore, under weakwind

conditions during the nighttime, errors in the observed

fluxes increase (e.g., Aubinet et al. 2012). Also contrib-

uting to the lower R2 between the observed and model-

derived fluxes and u* during the nighttime than during

the daytime is that the range of fluxes, and also u*,

is smaller at night.

Although we have so far focused here on relationships

between the observations and theHRRR1-h forecast, we

found that the HRRR did well reproducing the observed

values. Of the HRRR model runs that we evaluated, we

found that the smallest RMSEs were in the 0-h output

which indicates that the HRRR accurately reproduced

the initial conditions.Wedid note some exceptions. In the

case ofG, for example, the lowest RMSE tended to occur

in the longer forecast periods (i.e., the 6-, 12-, 18-h fore-

casts). Although the RMSEs were only slightly smaller

for the longer forecast periods when the entire diurnal

cycle was considered (cf. Table 5), lower RMSEs were

most evident in the daytime values (cf. Table 6), and this

was found to happen at both sites. The lower RMSEs for

G at the longer forecast periods suggest that the HRRR

initial conditions are not in good balance but come into

better agreement at the later forecast periods.

For the all other variables besides G, the RMSEs in-

creased as the forecast period increased, and this happened

not only when the entire diurnal cycle was considered

(Table 5), but also during the afternoon (Table 6)

and nighttime (Table 7) periods. When considering the

components of the surface energy balance, we found

that the RMSE was typically lowest in the 1-h forecast

when also compared to output from the 0-hHRRR runs.

In the next sections, we further explore these differ-

ences by investigating how well the HRRR reproduces

the mean monthly diurnal cycles of the meteorological

variables and surface energy balance components.

b. Mean monthly diurnal cycle of surface
meteorological variables

We focused on the mean monthly diurnal cycles in

three different seasons by selecting the middle month

within each season, and we analyzed output from the

initial conditions (i.e., 0 h) as well as the 1-, 3-, 6-, 12-,

and 18-h HRRR forecasts.

TABLE 6. As in Table 5, but for afternoon (1200–1600 LST) values.

Station Variable 0 h 1 h 3 h 6 h 12 h 18 h

Belle Mina Ta (8C) 0.69 0.91 1.24 1.65 1.68 1.66

Ts (8C) 2.51 2.79 3.10 3.35 3.33 3.29

Td (8C) 1.23 1.91 2.04 2.18 2.39 2.32

u (m s21) 0.94 1.30 1.40 1.39 1.44 1.49

y (m s21) 1.06 1.39 1.61 1.77 1.76 1.76

Wspd (m s21) 0.87 1.15 1.35 1.35 1.30 1.30

u* (m s21) 0.16 0.13 0.14 0.14 0.14 0.14

SWin (Wm22) 155.76 134.44 139.05 145.66 142.18 133.97

SWout (Wm22) 20.99 19.89 20.56 20.72 20.37 19.47

LWin (Wm22) 19.73 19.05 19.84 20.57 20.79 19.59

LWout (Wm22) 15.13 16.72 18.46 19.93 19.77 19.42

H (Wm22) 86.47 92.20 93.68 91.42 90.40 90.85

LE (Wm22) 86.31 83.00 79.42 80.44 83.18 82.64

G (Wm22) 39.68 31.77 30.71 32.89 30.70 28.42

Rn1 (Wm22) 117.59 97.68 98.64 102.05 100.58 94.13

Rn2 (Wm22) 115.21 107.88 107.74 112.62 107.06 102.22

Cullman Ta (8C) 0.73 0.87 1.10 1.43 1.58 1.62

Ts (8C) 2.35 2.57 2.70 2.76 2.80 2.78

Td (8C) 1.29 1.37 1.58 1.80 1.87 1.82

u (m s21) 0.85 1.08 1.19 1.12 1.18 1.24

y (m s21) 0.95 1.24 1.27 1.30 1.36 1.39

Wspd (m s21) 0.80 1.05 1.17 1.19 1.18 1.22

u* (m s21) 0.12 0.15 0.15 0.16 0.16 0.16

SWin (Wm22) 147.38 133.39 129.21 126.46 130.10 131.82

SWout (Wm22) 20.15 18.62 18.67 17.97 19.45 19.46

LWin (Wm22) 20.24 20.02 20.31 20.34 20.80 20.73

LWout (Wm22) 14.21 15.49 16.19 16.42 16.53 16.46

H (Wm22) 64.23 69.60 70.87 70.11 70.26 69.22

LE (Wm22) 48.07 48.83 45.87 47.07 44.88 46.51

G (Wm22) 42.54 36.37 34.97 34.60 33.90 34.36

Rn1 (Wm22) 112.26 96.50 92.08 90.24 92.00 94.28

Rn2 (Wm22) 105.72 106.03 104.15 103.83 100.62 104.28

JUNE 2019 LEE ET AL . 643



We found that the HRRR has a cold bias in Ta

relative to the observations during the nighttime, and

these biases can be up to 1.58C depending on the

HRRR forecast period. This pattern reversed dur-

ing the daytime with warm biases in the HRRR up

to 1.78C at Belle Mina (Figs. 2a–c) and Cullman

(Figs. 3a–c). All the model forecasts showed the same

general trends in the diurnal differences, although

there were some exceptions. For example, the shorter

forecast periods of the HRRR (i.e., the 1- and 3-h

forecasts) were too cool during the nighttime in Oc-

tober at Belle Mina, with mean biases of 1.08–1.58C.
Also, the later forecast periods (i.e., the 12- and 18-h

forecasts) tended to have a warm nocturnal bias at

Cullman. In general, the HRRR’s forecasted Ta was

pretty consistent for different length forecasts with the

exception of during October, where at both Belle Mina

(Fig. 2a) and Cullman (Fig. 3a) there were marked

changes for the different forecasts during the nighttime

hours. These differences between the HRRR forecasts

and observations are further supported by the differ-

ences in LWout between the model and observations, as

we saw larger daytime biases in LWout in the HRRR at

both Belle Mina and Cullman in the mean monthly

diurnal cycles of LWout (not shown). This finding is

consistent with previous studies that have also found a

warm daytime bias in near-surface temperatures in the

HRRR (e.g., Benjamin et al. 2016). The mean diurnal

cycles for Ts (not shown) somewhat contradicted the

findings for LWout. We found that the largest Ts biases

occurred during the daytime at Belle Mina between

December and February, during which the mean ob-

served Ts were over 38C larger than in the HRRR.

In the case of Td, the HRRR forecasts showed a

moist bias that was larger at Cullman than Belle Mina

(Figs. 2d–f, Figs. 3d–f). Differences between the model

and observations tended to be smaller during the

nighttime than daytime. At Belle Mina, the HRRR 2-m

Td was about 18C cooler than the observations during

the nighttime in October and April, whereas the HRRR

had a slight wet bias during the nighttime in January at

Cullman. This was fairly consistent for the different

model runs. The largest differences between the model

and observations, sometimes up to 38C, occurred during

TABLE 7. As in Table 5, but for nighttime (0000–0400 LST) values. Note that statistics are not shown for SWin or SWout.

Station Variable 0 h 1 h 3 h 6 h 12 h 18 h

Belle Mina Ta (8C) 1.13 1.20 1.37 1.66 1.93 1.95

Ts (8C) 1.33 1.46 1.74 1.96 2.25 2.18

Td (8C) 1.17 1.30 1.50 1.64 1.81 1.82

u (m s21) 0.69 1.05 1.11 1.12 1.20 1.20

y (m s21) 0.91 1.26 1.44 1.43 1.38 1.50

Wspd (m s21) 0.71 1.03 1.12 1.14 1.13 1.15

u* (m s21) 0.11 0.12 0.13 0.13 0.13 0.14

SWin (Wm22) — — — — — —

SWout (Wm22) — — — — — —

LWin (Wm22) 20.77 22.04 23.28 21.36 23.79 24.11

LWout (Wm22) 6.73 7.40 8.90 10.08 11.55 11.15

H (Wm22) 11.61 10.79 11.45 11.12 10.57 11.01

LE (Wm22) 10.89 11.00 10.75 10.41 10.38 10.35

G (Wm22) 21.82 19.03 18.23 17.08 18.88 19.50

Rn1 (Wm22) 20.69 19.59 20.05 18.73 20.94 21.01

Rn2 (Wm22) 24.75 20.36 20.02 18.28 19.27 19.33

Cullman Ta (8C) 1.06 1.12 1.22 1.45 1.76 1.81

Ts (8C) 1.13 1.19 1.39 1.63 1.94 1.96

Td (8C) 0.97 1.02 1.24 1.40 1.65 1.66

u (m s21) 0.71 1.02 1.03 1.10 1.08 1.06

y (m s21) 0.89 1.33 1.36 1.34 1.35 1.37

Wspd (m s21) 0.80 0.94 0.97 1.01 1.05 1.07

u* (m s21) 0.09 0.15 0.15 0.16 0.16 0.17

SWin (Wm22) — — — — — —

SWout (Wm22) — — — — — —

LWin (Wm22) 17.85 21.52 20.26 22.10 22.99 24.65

LWout (Wm22) 5.77 6.09 7.15 8.36 10.09 10.09

H (Wm22) 9.77 13.80 14.33 13.23 12.82 13.41

LE (Wm22) 9.48 10.11 10.55 9.99 10.32 11.14

G (Wm22) 24.84 20.39 18.43 18.46 18.90 21.32

Rn1 (Wm22) 17.85 19.81 18.46 19.65 19.88 20.98

Rn2 (Wm22) 24.84 21.64 20.85 20.27 20.99 21.22
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the daytime, depending on the model run. Again, the

diurnal bias of Td for most forecast times was pretty

consistent in the three seasons, except for January

at both Belle Mina and Cullman where the daytime

moist bias in theHRRR increases for the longer forecast

times.

When putting the above results on the differences

between the modeled and observed Ta and Td into the

context of previous studies, we note that the daytime

warm bias that we identified in 2-m air temperatures

is contradictory to findings from other evaluations of

mesoscale models over the southern United States.

For example, Hu et al. (2010), when evaluating

three different PBL schemes commonly used in the

Weather Research and Forecasting (WRF) Model

[i.e., the Mellor–Yamada–Janjić (MYJ) scheme, Yonsei

University (YSU) scheme, and Asymmetric Convective

Model version 2 (ACM2) scheme], found that all three

FIG. 2. Mean difference in the diurnal cycle between the HRRR forecast and observations of Ta in (a) October 2016, (b) January

2017, and (c) April 2017 at Belle Mina. (d)–(f) As in (a)–(c), but for Td. (g)–(i) As in (a)–(c), but forWspd. The black, brown, red, orange,

green, and blue lines show the 0-, 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, respectively.
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PBL schemes had a daytime cool bias of ’28C when

averaged across 211 observing stations in the southern

United States. Wilczak et al. (2009) found a similar bias

when using the WRF-ChemModel for a study in Texas,

and this daytime cool bias has been noted in studies with

the RUC (e.g., Smirnova et al. 2016). Most likely, the

discrepancy between our study and these previous stud-

ies is due to how the models used in these studies repre-

sented subgrid-scale clouds. Consistent with our findings

evaluating the diurnal cycles of Td, though, was that the

WRF simulations by Hu et al. (2010) evaluating different

PBL schemes all showed a daytime moist bias.

When comparing the mean diurnal cycles of wind

speed from the observations with the HRRR, we

found that the HRRR forecasts simulated the mean

diurnal cycle of Wspd accurately in each month at

both Belle Mina (Figs. 2g–i) and Cullman (Figs. 2g–i)

but overestimated the magnitude of Wspd by about

FIG. 3. As in Fig. 2, but for Cullman.
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1.0–1.5m s21 at both sites. Of the HRRR forecast pe-

riods, the smallest errors were in the 1-h forecast, and

errors tended to be lower during the daytime than

nighttime. Interestingly, though, the wind speeds in

the HRRR initial conditions (i.e., the 0-h output)

were considerably different from the other fore-

cast periods. The HRRR Wspd showed much better

agreement with the observations at Cullman than at

Belle Mina. HRRR’s overestimate of Wspd is sur-

prising because the first model level in the HRRR is

8m AGL, although the observations were made 10m

AGL, and because the roughness lengths are higher in

the HRRR than the observed values. However, the

tendency for models to overestimate near-surface winds,

which is attributed to too much mechanical mixing, is a

finding consistent with previous work [e.g., comparing

FIG. 4. Mean difference in the diurnal cycle between the HRRR forecast and observations ofH in (a) October 2016, (b) January 2017,

and (c) April 2017 at Belle Mina. (d)–(f) As in (a)–(c), but for LE. (g)–(i) As in (a)–(c), but forG. The black, brown, red, orange, green,

and blue lines show the 0-, 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, respectively.
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near-surface observed wind speeds with those from the

National Center for Atmospheric Research (NCAR)

Mesoscale Model (MM5) (e.g., Zhang and Zheng 2004)

and the WRF Model (e.g., Cheng and Steenburgh 2005;

Hu et al. 2010)].

c. Monthly diurnal cycle of surface fluxes

When comparing the mean monthly diurnal cycles

of the different components of the surface energy

balance, we found similar agreement among the dif-

ferent HRRR forecast periods for H, LE, and G at

Bella Mina (Fig. 4) and Cullman (Fig. 5). Mean dif-

ferences between the observations and HRRR fore-

cast periods were typically650Wm22, but there were

exceptions. Most notable was a significant overesti-

mate of H in the HRRR in April at Belle Mina and

Cullman. Also noteworthy was that in January when

LE is typically small, we found that the HRRR still

overestimated LE by up to 100Wm22 at Belle Mina

and up to 75Wm22 at Cullman. In the case of G,

the HRRR tended to be biased low relative to the

observations. The largest differences in G of nearly

FIG. 5. As in Fig. 4, but for Cullman.
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100Wm22 occurred during the daytime in April at

Cullman.

We found better agreement when comparing the

observed mean monthly diurnal cycles of SWnet (i.e.,

SWin 2 SWout) and LWnet (i.e., LWin 2 LWout) with

the HRRR forecast periods at Bella Mina (Fig. 6) and

Cullman (Fig. 7). We found that there was larger

variability among the different HRRR forecast pe-

riods relative to the observations for SWnet than we

found for LWnet. LWnet in the HRRR output showed

better agreement with the observations than did SWnet;

for LWnet, the HRRR was generally between 10 and

40Wm22 lower than the observations, depending on

the time of day and season. The smallest HRRR bias

occurred between 0900 and 1200 LST, whereas the

largest HRRR bias was typically between 1500 and 1800

LST. These time-of-day biases suggested there may be

some lag between the observations and HRRR. To in-

vestigate these lags in more detail, we computed the R2

and RMSE between the observed LWnet and HRRR

LWnet using temporal lags ranging from 26 h to 16 h.

We found that, at both sites, theR2 (RMSE) was slightly

larger (smaller) when the observations lag theHRRR1-h

forecast by 1h. At Belle Mina (Cullman), the R2 was

0.727 (0.712) with no lag but 0.754 (0.717) with this 1-h

lag. The remaining lags showed much smaller R2 and

larger RMSE. However, we found no temporal lag in

SWnet. At Belle Mina (Cullman), the R2 was 0.894

(0.880) with no lag but 0.829 (0.795) with this 1-h lag, and

RMSEs were smallest when there was no temporal lag.

d. Surface energy balance

As differences among the different HRRR forecast

periods were generally small, we used the 1-h HRRR

forecast as an example to illustrate how the calculated

surface energy balance compared between the obser-

vations and HRRR. As stated earlier, we found that the

HRRR simulated the cycles of incoming and outgoing

longwave radiation well at Belle Mina (Figs. 8a–c) and

Cullman (Figs. 9a–c). Furthermore, the model over-

estimated LWout by up to 40Wm22; this overestimate

is most noticeable at Belle Mina and Cullman in April

(cf. Figs. 8c, 9c). The overestimates of LWout in the

HRRR did not, however, correspond with positive

FIG. 6. Mean difference in the diurnal cycle between the HRRR forecast and observations of SWnet in (a) October 2016, (b) January

2017, and (c) April 2017 at Belle Mina. (d)–(f) As in (a)–(c), but for LWnet. The black, brown, red, orange, green, and blue lines show the

0-, 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, respectively.
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biases in Ts; the observed Ts was typically larger the

HRRRTs, and these differences weremaximized during

the daytime. This discrepancy may be due to the small

spatial representativeness of the Ts observations.

Furthermore, the HRRR has a tendency to under-

estimate SWin, likely due to an incorrect treatment of

subgrid-scale clouds. As a result of the underestimates

in SWin, there existed a systematic bias in SWout from

the HRRR in all three months at both sites. The bias

in SWout was due to the bias error in SWin and also

likely to biases in the surface albedo (not shown).

Overall, the biases in the SWin and SWout can-

celed out and resulted in Rn1, computed as the sum of

SWnet and LWnet, showing good agreement with the

observations.

We found larger differences between the mean di-

urnal cycles of the HRRR and observations when

evaluating the diurnal time series of H, LE, and G

(Figs. 8d–f, 9d–f). For example, in April at Belle

Mina, we found that the HRRR overestimated H

by ’150Wm22 during the midday and early afternoon,

whereas LEwas’50Wm22 lower than the observations,

which resulted in HRRR overestimates of Rn2, com-

puted as the sum ofH, LE, andG. In general, we found

that afternoon LE was typically larger in the HRRR

than in the observations at Belle Mina in all months

except for April. The magnitude of the differences in

afternoon LE between the observations and HRRR

was smaller at Cullman, and the overestimate of af-

ternoon LE in the model was present in all months

except for August, September, and April. Differ-

ences between HRRR G and observed G were

typically ,640Wm22 at both sites.

Overall, the differences found here were expected,

especially the HRRR’s overestimates of LE. For

example, as noted in section 2b, the plant func-

tional type for the HRRR grid cells containing Belle

Mina was classified as cropland, whereas the area

surrounding Belle Mina was mostly grassland, which

would be expected to have a lower LE than cropland.

The smaller differences between the HRRR and

Cullman observations may have occurred because

the HRRR land use type was more representative of

the actual land use type. Even so, differences be-

tween the observed fluxes and HRRR-derived fluxes

were not insignificant, as H was up to 100Wm22

larger in the HRRR than in the Cullman observa-

tions (cf. Fig. 9f).

FIG. 7. As in Fig. 6, but for Cullman.
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When comparing energy balance closure between

the observations and model, we found that, the HRRR

closed the energy balance as evident by Rn1 ’Rn2

throughout the entire diurnal cycle at both Belle Mina

(Figs. 8g–i) and Cullman (Figs. 9g–i). Energy bal-

ance closure occurred because it is hard-coded in the

HRRR’s LSM. However, the observations from both

sites did not show full energy balance closure. Differ-

ences betweenRn1 andRn2 were up to 100Wm22 at both

Belle Mina (Figs. 8g–i) and at Cullman (Figs. 9g–i),

which is attributed to the energy balance closure prob-

lem in micrometeorology (e.g., Aubinet et al. 1999;

Foken 2008; Frank et al. 2013; Xu et al. 2017). We

discuss this in more detail later in this section. For

the entire evaluation period, the RMSE between Rn1

and Rn2 at Belle Mina (Cullman) was 35.2Wm22

(37.2Wm22) in the observations, but 9.7Wm22

(10.0Wm22) in the 1-h HRRR forecast. Additionally,

FIG. 8. Mean difference in the diurnal cycle between the 1-h HRRR forecast and observed diurnal cycle of SWin (red line), SWout

(orange line), LWin (green line), LWout (blue line), and Rn1 (black line) in (a) October 2016, (b) January 2017, and (c) April 2017 at Belle

Mina. (d)–(f) As in (a)–(c), but for the mean difference in the diurnal cycle between the 1-h HRRR forecast and observed diurnal cycle of

H (red line), LE (blue line), G (green line), and Rn2 (black line). (g)–(i) As in (a)–(c), but for the mean difference in the diurnal cycle

between the 1-h HRRR forecast and observed diurnal cycles of Rn1 (black line) and Rn2 (red line).
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R2 between Rn1 and Rn2 at Belle Mina (Cullman) was

0.956 (0.944) in the observations, but 0.997 (0.998) in the

1-h HRRR forecast.

To examine in more detail the relationships between

the different components of the surface energy balance,

we calculated the relationship between H 1 LE and

SWnet at both Belle Mina and Cullman (Fig. 10) us-

ing the observations and HRRR 1-h forecast. Doing so

allowed for us to quantify how well the observations and

the HRRR capture the response of the land-atmosphere

system (i.e.,H1LE) to a given net input into the system

(i.e., SWnet). We found that the relationships between

these variables were similar; R2 was .0.90 at both sites

in the observations and the HRRR. However, the slope

of the relationship between the two variables was much

steeper in the model (0.65 and 0.63 in the HRRR out-

put at Belle Mina and Cullman, respectively, for the

entire period of record) than in the observations (0.52

and 0.51 at Belle Mina and Cullman, respectively, for

the entire period of record). The larger slopes in the

HRRR than in the observations was consistent in the

different seasons, as summarized in Table 8. When in-

vestigating this relationship as a function of time of

day, we found that the slopes of this relationship were

FIG. 9. As in Fig. 8, but for Cullman.
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consistently lower in the morning than in the afternoon

in both the observations and HRRR output at Belle

Mina and Cullman. The findings here, particularly

the larger slopes in the HRRR compared to the ob-

servations, underscore important time-of-day biases

present in the HRRR.

The absence of complete energy balance closure is

well known and is consistent with previous studies

(e.g., Aubinet et al. 1999). Reasons for the energy im-

balance are numerous; measurement errors are oftentimes

cited (e.g., Foken 2008; Xu et al. 2017). To ensure high-

quality datasets and to mitigate possible measurement

TABLE 8. Best-fit equation and R2 between H 1 LE and SWnet in the observations and HRRR output from Belle Mina and Cullman

for select months and time periods. The number of data points used in each fit N is also noted.

Station Month Times (LST)

Best-fit equation

(y: H 1 LE, x: SWnet) R2 N

Belle Mina, observations All 0000–2400 y 5 0.52x 2 10.12 0.93 4994

All 0600–1000 y 5 0.52x 2 20.48 0.90 1074

All 1200–1600 y 5 0.55x 2 19.50 0.88 1084

Oct 2016 0000–2400 y 5 0.53x 2 13.37 0.94 684

Jan 2017 0000–2400 y 5 0.48x 2 9.38 0.92 697

Apr 2017 0000–2400 y 5 0.54x 2 7.41 0.94 685

Belle Mina, HRRR All 0000–2400 y 5 0.65x 2 1.93 0.94 5253

All 0600–1000 y 5 0.52x 2 4.25 0.84 878

All 1200–1600 y 5 0.67x 1 1.51 0.94 880

Oct 2016 0000–2400 y 5 0.60x 2 11.85 0.96 723

Jan 2017 0000–2400 y 5 0.64x 1 5.45 0.91 725

Apr 2017 0000–2400 y 5 0.68x 2 2.72 0.97 718

Cullman, observations All 0000–2400 y 5 0.51x 2 9.53 0.93 4478

All 0600–1000 y 5 0.50x 2 19.11 0.91 986

All 1200–1600 y 5 0.54x 2 19.92 0.90 993

Oct 2016 0000–2400 y 5 0.50x 2 7.84 0.94 670

Jan 2017 0000–2400 y 5 0.49x 2 11.25 0.92 697

Apr 2017 0000–2400 y 5 0.55x 2 9.94 0.95 317

Cullman, HRRR All 0000–2400 y 5 0.63x 2 4.62 0.94 4789

All 0600–1000 y 5 0.48x 2 7.72 0.82 801

All 1200–1600 y 5 0.66x 1 0.29 0.94 802

Oct 2016 0000–2400 y 5 0.61x 2 11.67 0.96 728

Jan 2017 0000–2400 y 5 0.60x 1 1.18 0.89 725

Apr 2017 0000–2400 y 5 0.66x 1 0.80 0.96 351

FIG. 10. Relationship betweenH1 LE and SWnet at (a) Belle Mina and (b) Cullman, based on all hourly values.

Black dots show the observations; red dots show the 1-h HRRR forecast. In (a), N 5 4994 and 5223 for the

observations and model, respectively; in (b), N 5 4778 and 4789 for the observations and model, respectively.
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errors, the closed path infrared gas analyzers used at

both sites (cf. section 2a) were calibrated prior to de-

ployment, and all observed datasets were carefully and

rigorously screened (cf. section 2a). However, other

measurement errors may be induced by potential

errors in G and the representativeness of these

measurements. As shown in, for example, Figs. 8d–f

and 9d–f, G is not insignificant. Because of the in-

herent nature of soil variability, there can exist dif-

ferences in soil properties, leading to differences in

the bulk density and porosity derived from the soil

samples and to differences in the soil temperatures,

all of which are used to calculate G (cf. section 2a).

To help mitigate these potential errors, we selected

soil samples from five different sites surrounding the

towers and averaged measurements from these to

determine mean soil characteristics.

Besides measurement errors, horizontal advection

and land surface heterogeneity are also cited as causes

for the absence of energy balance closure (e.g., Foken

2008; Frank et al. 2013; Xu et al. 2017). To filter periods

when there is significant horizontal advection of sen-

sible or latent heat, we removed 30-min fluxes when the

flux divergence, computed as the difference in H and

LE between the measurements made 3m AGL and

10m AGL, exceeded 20% during the given period.

However, we found that this did not impact the ob-

served diurnal cycles ofH and LE shown in Figs. 8 and

9 and cannot explain the absence of energy balance

closure.

FIG. 11. Mean afternoon observed and forecasted (a) H, (b) LE, (c) Ta, and (d) Td at Belle

Mina in March and April 2017. The black lines show the observed values, and the red shading repre-

sents the range among the mean of all HRRR forecasts (i.e., 1-, 3-, 6-, 12-, and 18-h) 6 1 standard

deviation.
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e. HRRR performance during spring 2017 at Belle
Mina and Cullman

We have so far shown that the HRRR simulates the

observed near-surface meteorological fields well but has

difficulty simulating the energy balance. To investigate

the absence of energy balance closure in more detail,

we focused on the period in March and April 2017 when

mean afternoon sensible heat fluxes were overestimated

by 120.9 6 110.3Wm22 (110.7 6 62.0Wm22) at Belle

Mina (Cullman) in the 1-h HRRR forecast, with

comparable overestimates in the HRRR found for the

other forecast periods. When calculating the mean

afternoon (i.e., 1200–1600 LST) turbulent fluxes and

using these means to evaluate trends during this pe-

riod, we found that the HRRR compared poorly with

the observed H at Belle Mina (r 5 0.29, p 5 0.03),

as it overestimated H at times by over 200Wm22

(Fig. 11a). Furthermore, the HRRR 1-h forecast

indicated a statistically significant increase in H dur-

ing this time (r 5 0.29, p 5 0.02) in contrast to the ob-

servations that showed a reduction, albeit not statistically

significant (r 5 20.18, p 5 0.16), in H.

As noted in section 2a, therewas a data gap inApril 2017

at Cullman that limited the interpretation of the flux evo-

lution at this site during the period of interest. Nonetheless,

we noted that mean afternoon H was overestimated at

Cullman by up to 100–200Wm22 (Fig. 12a). Neither the

observed or HRRR-derived H exhibited a statistically

significant change during this period, as r5 0.15 (p5 0.35)

and r520.09 (p5 0.56) in the observations and HRRR,

respectively.

Although the differences between the observations

and the HRRRwere smaller for LE than forH, with the

HRRR on average 16.2 6 119.4 and 22.8 6 57.4Wm22

larger than the observations at Belle Mina and Cullman,

FIG. 12. As in Fig. 11, but for Cullman.
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respectively, the HRRR incorrectly simulated the LE

evolution during this period. The Belle Mina observa-

tions showed a statistically significant (r5 0.69, p, 0.01)

increase in LE between 1 March and 30 April 2017

that was absent from the HRRR (r 5 20.04, p 5 0.78)

(Fig. 11b). However, at Cullman, we found a statisti-

cally significant increase in the observed LE (r 5 0.51,

p, 0.01), but this was absent in the HRRR-derived LE

(r 5 0.12, p 5 0.46) (Fig. 12b).

The significant differences that we found between the

HRRR-derived and observed H and LE at both sites

can at least partially be explained by differences in soil

moisture and near-surface moisture. Although we did

not have soil moisture fields from the HRRR, we used

HRRR rainfall as a surrogate. In doing so, we found

that the HRRR underestimated rainfall during this pe-

riod. For example, at Belle Mina, 201mm of rain was

recorded between 1 March and 30 April, whereas the

HRRR 1-h forecast indicated 184mm of rainfall during

this period. Less precipitation during this period in the

HRRR would have led to the HRRR underestimating

soil moisture, contributing to the HRRR’s overesti-

mates of H. These dry biases in the HRRR may par-

tially help explain the differences between morning and

FIG. A1. Scatterplots showing the relationship between the 1-h HRRR forecast and Belle Mina observations from 1 September 2016 to

30 April 2017 for (a) Ta, (b) Ts, (c) Td, (d) u, (e) y, (f)Wspd, (g) u*, (h) SWin, (i) SWout, (j) LWin, (k) LWout, (l)H, (m) LE, (n)G, (o) Rn1,

and (p) Rn2. Red line shows best fit; green line shows 1:1 line.
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afternoon in the slope of the relationship between SWnet

and H 1 LE discussed in section 3d. Regardless, the

HRRR’s large overestimates of H were inconsistent

with what we found for Ta and Td during this period, as

we would expect the model’s large overestimates of H

to translate into much larger biases in Ta.

We speculate that the discrepancies noted here occurred

because, as noted previously, the area surrounding Belle

Mina was mostly grassland whereas it was assigned the

cropland plant functional type in the HRRR. The slightly

smaller biases at Cullman may be attributed to the HRRR

land use type being more representative of the actual

land use type, as discussed in section 3d. Furthermore,

the model–data mismatch identified here may also be an

artifact of HRRR’s data assimilation system; we discuss

this point in more detail in the next section. Overall,

though, we found that HRRR-derived mean afternoon Ta

(Figs. 11c, 12c) andTd (Figs. 11d, 12d) fromdifferent length

forecasts compared well with the Belle Mina and Cullman

observations. For Ta, the mean difference between the

observations and HRRR was 21.158 6 0.708C (21.298 6
0.608C) atBelleMina (Cullman); forTd, this differencewas

0.178 6 1.388C (20.908 6 0.988C) at BelleMina (Cullman).

4. Discussion

In summary, it was not surprising that the turbu-

lent fluxes from the HRRR did not agree as well with

FIG. A2. As in Fig. A1, but for Cullman.
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the observations as did the near-surface meteorological

fields. This finding was consistent with previous work

(e.g., Patil et al. 2011; Sun et al. 2017) and can be par-

tially attributed to the fact that the subgrid-scale vari-

ability in surface characteristics within the footprint of

the flux tower measurements cannot be fully resolved by

the HRRR.

However, the magnitude of differences between the

HRRR and the observed fluxes from Belle Mina and

Cullman is noteworthy, as shown by 1) the differences

in the mean monthly diurnal cycles (cf. section 3c), 2)

the morning versus afternoon differences in the forcing

versus the response (cf. section 3d), and 3) the failure of

the HRRR to capture trends in the surface flux evolution

during the spring 2017 study period (cf. section 3e).

Although there is unlikely a single cause for the dis-

crepancies we found between the observations and the

HRRR in the present study, these discrepancies are

likely due to a combination of 1) errors in HRRR’s

initial/boundary conditions, 2) errors in the HRRR’s

LSM, and 3) errors in the HRRR’s PBL scheme. As

the HRRR LSM is modified every hour using Ta and

Td observations measured 2m AGL (i.e., Benjamin

et al. 2016), errors in these initial conditions can in-

troduce errors in the HRRR forecasts. Newer versions

of the HRRR, including the HRRRv3 which became

operational at NCEP in summer 2018, include modi-

fications to the surface layer coupling coefficients and

FIG. A3. As in Fig. A1, but only for afternoon (1200–1600 LST) values at Belle Mina.
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changes in the data assimilation system [e.g., including

giving more weight to the Gridpoint Statistical Inter-

polation (GSI) analysis system and changes in the digi-

tal filter initialization (DFI)]. Testing the extent to which

these modifications improve the HRRR’s estimates of

surface fluxes will be the subject of future studies.

Additionally, some of the biases we identified in the

present study may be attributed to the PBL mixing

scheme used, in addition to the HRRR’s LSM. We

noted in section 3d that the HRRR underestimated

SWin due to an incorrect treatment of subgrid-scale

clouds. In addition to the modifications described previ-

ously, the HRRRv3 uses a MYNN PBL scheme that has

been modified to an eddy diffusivity mass flux (EDMF)

scheme (e.g., Angevine et al. 2018). The EDMF scheme

includes better subgrid-scale clouds and is expected to

reduce the radiative errors found in the present study.

Last, we note that, although the approach currently

used in the HRRR may work for HRRR forecasts that

are up to ’36h in length like the HRRRv3, this ap-

proach is likely to fail at longer time scales. Longer

forecast periods (e.g., from subseasonal to seasonal) are

more sensitive to LSM behavior than the forecast pe-

riods currently available from the HRRR; thus this

current implementation is not expected to do as well at

these longer forecast periods. For example, latent heat

fluxes over the southeastern United States were over-

estimated by’200Wm22 in theNorthAmericanModel

FIG. A4. As in Fig. A2, but only for afternoon (1200–1600 LST) values at Cullman.
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(NAM) following the 2007 spring freeze in the eastern

United States. This was because the late season freeze

led to significant vegetation damage (e.g., Gu et al. 2008;

Mulholland et al. 2009) that resulted in a significant re-

duction in the observed latent heat fluxes and thereby a

larger partitioning of available energy into sensible heat

flux. If the models are unable to correctly simulate the

fluxes, they cannot be expected to produce reliable Ta

and Td forecasts.

5. Summary and outlook

In the present study, we evaluated how well the

HRRR reproduced near-surface meteorological fields

and the surface energy balance over an 8-month period,

using observations obtained from two 10-m microme-

teorological towers installed in northern Alabama. We

found that the HRRR did well reproducing the ob-

servations of air and dewpoint temperature at both of

these sites, with R2 generally .0.95 and the RMSE

typically ,28C for the period over which we evaluate

the HRRR.Model biases were largest during the warm

season months, with overestimates in mean afternoon

temperature on the order of 28C at both sites, and

smallest in the winter months when temperature dif-

ferences were ,18C.
We also identified biases in the HRRR’s treatment of

the components of the surface energy balance. Whereas

FIG. A5. As in Fig. A1, but only for nighttime (0000–0400 LST) values at Belle Mina. Note that no values are shown for SWin or SWout.
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the HRRR closed the surface energy balance and also

generally simulated longwave and shortwave radiation

well, there were significant biases in sensible and latent

heat that varied seasonally and, to some extent, from site

to site.

Overall, this study highlights some of the strengths

and weaknesses of the operational HRRR forecast

model. Although the HRRR accurately reproduced

the near-surface meteorological fields during the study

period, the HRRR has notable biases in the fluxes

that cannot explain the good agreement between the

observed and HRRR-derived near-surface temperature

and moisture fields. This finding helps to motivate the

need for additional studies of the HRRR land surface

scheme so that improvements can be made to remedy

these deficiencies. This will be essential as the HRRR

makes forecasts for longer time scales.
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APPENDIX

Scatterplots of the Relationships between
Observations and HRRR

Here we present all 96 scatterplots from which the

summary statistics shown in Tables 2, 3, and 4 were

computed. To this end, Fig. A1 shows the relationship

between the 1-h HRRR forecast and Belle Mina ob-

servations from 1 September 2016 to 30 April 2017 for

all variables in the present study and for all time pe-

riods. The same information for Cullman is shown in

Fig. A2. In Figs. A3 and A4, these relationships are

shown only for daytime (i.e., 1200–1600 LST) values at

Belle Mina and Cullman, respectively, and in Figs. A5

and A6 these relationships are shown only for the

nighttime (i.e., 0000–0400 LST).
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